Hannah Arendt Center for Politics and Humanities
16Dec/130

The Laboratory as Anti-Environment

Arendtquote

"Seen from the perspective of the "real" world, the laboratory is the anticipation of a changed environment."

-Hannah Arendt, The Life of the Mind

I find this quote intriguing in that its reference to environments and environmental change speak to the fact that Arendt's philosophy was essentially an ecological one, indeed one that is profoundly media ecological. The quote appears in a section of The Life of the Mind entitled "Science and Common Sense," in which Arendt argues that the practice of science is quite distinct from thinking as a philosophical activity.

lifeofmind

As she explains:

Thinking, no doubt, plays an enormous role in every scientific enterprise, but it is a role of a means to an end; the end is determined by a decision about what is worthwhile knowing, and this decision cannot be scientific.

Here Arendt invokes a variation on Gödel's incompleteness theorem in mathematics, noting that science cannot justify itself on scientific grounds, but rather must somehow depend on something outside of and beyond itself. Perhaps more to the point, science, especially as associated with empiricism, cannot be divorced from concrete reality, and does not function only in the abstract realm of ideas that Plato insisted was the only true reality.

The transformation of truth into mere verity results primarily from the fact that the scientist remains bound to the common sense by which we find our bearings in a world of appearances. Thinking withdraws radically and for its own sake from this world and its evidential nature, whereas science profits from a possible withdrawal for the sake of specific results.

It is certainly the case that scientific truth is always contingent, tentative, open to refutation, as Karl Popper explained.  Scientific truth is never absolute, never anything more than a map of some other territory, a map that needs to be continually tested and reviewed, updated and revised, as Alfred Korzybski explained by way of establishing his discipline of general semantics. Even the so-called laws of nature and physics need not be considered immutable, but may be subject to change and evolution, as Lee Smolin argues in his insightful book, Time Reborn.

Scientists are engaged in the process of abstracting, insofar as they take the data gained by empirical investigation and make generalizations in the form of theories and hypotheses, but this process of induction cannot be divorced from concrete reality, from the world of appearances. Science may be used to test, challenge, and displace common sense, but it operates on the same level, as a distilled form of common sense, rather than something qualitatively different, a status Arendt reserves for the special activity of thinking associated with philosophy.

Arendt goes on to argue that both common sense and scientific speculation lack "the safeguards inherent in sheer thinking, namely thinking's critical capacity."  This includes the capacity for moral judgment, which became horrifically evident by the ways in which Nazi Germany used science to justify its genocidal policies and actions. Auschwitz did not represent a retrieval of tribal violence, but one of the ultimate expressions of the scientific enterprise in action. And the same might be said of Hiroshima and Nagasaki, holding aside whatever might be said to justify the use of the atomic bomb to bring the Second World War to a speedy conclusion. In remaining close to the human lifeworld, science abandons the very capacity that makes us human, that makes human life and human consciousness unique.

The story of modern science is in fact a story of shifting alliances. Science begins as a branch of philosophy, as natural philosophy. Indeed, philosophy itself is generally understood to begin with the pre-Socratics sometimes referred to as Ionian physicists, i.e., Thales, Anaximander, Heraclitus, who first posited the concept of elements and atoms. Both science and philosophy therefore coalesce during the first century that followed the introduction of the Greek alphabet and the emergence of a literate culture in the ancient Greek colonies in Asia Minor.

And just as ancient science is alphabetic in its origins, modern science begins with typography, as the historian Elizabeth Eisenstein explains in her exhaustive study, The Printing Press as an Agent of Change in Early Modern Europe. Simply by making the writings of natural philosophers easily available through the distribution of printed books, scholars were able to compare and contrast what different philosophers had to say about the natural world, and uncover their differences of opinion and contradictions. And this in turn spurned them on to find out for themselves which of various competing explanations are correct, where the truth lies, so that more reading led to even more empirical research, which in turn would have to be published, that is made public, via printing, for the purposes of testing and confirmation. And publication encouraged the formation of a scientific republic of letters, a typographically mediated virtual community.

guten

Eisenstein notes that during the first century following Gutenberg, printed books gave Copernicus access to centuries of recorded observations of the movements of celestial objects, access not easily available to his predecessors. What is remarkable to consider is that the telescope was not invented in his lifetime, that the Polish astronomer arrived at his heliocentric view based only on what could be observed by the naked eye, by gazing up at the heavens, and down at the printed page. The typographic revolution that began in the 15th century was the necessary technological precondition for the Copernican revolution of the 16th century.  The telescope as a tool to extend vision beyond its natural capabilities had not yet been invented, and was not required, although soon after its introduction Galileo was able to confirm the theory that Copernicus had put forth a century earlier.

In the restricted literate culture of medieval Europe, the idea took hold that there are two books to be studied in an effort to discern the divine will, and mind: the book of scripture and the book of nature. Both books were seen as sources of knowledge that can be unlocked by a process of reading and interpretation. It was grammar, the ancient study of language, which became one third of the trivium, the foundational curriculum of the medieval university, that became the basis of modern science, and not dialectic or logic, that is, pure thinking, which is the source of the philosophic tradition, as Marshall McLuhan noted in The Classical Trivium. The medieval schoolmen of course placed scripture in the primary position, whereas modern science situates truth in the book of nature alone.

The publication of Francis Bacon's Novum Organum in 1620 first formalized the separation of science from philosophy within print culture, but the divorce was finalized during the 19th century, coinciding with the industrial revolution, as researchers became known as scientists rather than natural philosophers. In place of the alliance with philosophy, science came to be associated with technology; before this time, technology, and engineering, often referred to as mechanics, represented entirely different lines of inquiry, utterly practical, often intuitive rather than systematic. Mechanics was part of the world of work rather than that of action, to use the terms Arendt introduced in The Human Condition, which is to say that it was seen as the work of the hand rather than the mind. By the end of 19th century, scientific discovery emerged as the main the source of major technological breakthroughs, rather than innovation springing fully formed from the tinkering of inventors, and it became necessary to distinguish between applied science and theoretical science, the latter nonetheless still tied to the world of appearances.

Today, the acronym STEM, which stands for science, technology, engineering, and mathematics, has become a major buzzword in education, a major emphasis in particular for higher education, and a major concern in regards to economic competitiveness. We might well take note of how recent this combination of fields and disciplines really is, insofar as mathematics represents pure logic and highly abstract forms of thought, and science once was a purely philosophical enterprise, both aspects of the life of the mind. Technology and engineering, on the other hand, for most of our history took the form of arts and crafts, part of the world of appearances.

The convergence of science and technology also had much to do with scientists' increasing reliance on scientific instruments for their investigations, a trend increasingly prevalent following the introduction of both the telescope and the microscope in the early 17th century, a trend even more apparent from the 19th century on. The laboratory is in fact another such instrument, a technology whose function is to provide precisely controlled conditions, beyond its role as a facility for the storage and use of other scientific instruments. Scientific instruments are media that extend our senses and allow us to see the world in new ways, therefore altering our experience of our environment, while the discoveries they lead to provide us with the means of altering our environments physically. And the laboratory is an instrument that provides us with a total environment, enclosed, controlled, isolated from the world to become in effect the world. It is a micro-environment where experimental changes can be made that anticipate changes that can be made to the macro-environment we regularly inhabit.

The split between science and philosophy can also be characterized as a division between the eye and the ear. Modern science, as intimately bound up in typography, is associated with visualism, the idea that seeing is believing, that truth is based on vision, that knowledge can be displayed visually as an organized set of facts, rather than the product of ongoing dialogue, and debate. McLuhan noted the importance of the fixed point of view as a by-product of training the eye to read, and Walter Ong studied the paradigm-shift in education attributed to Peter Ramus, who introduced pedagogical methods we would today associated with textbooks, outlining, and the visual display of information. Philosophy has not been immune to this influence, but retains a connection to the oral-aural mode through the method of Socratic dialogue, and by way of an understanding of the history of ideas as an ongoing conversation. Arendt, in The Human Condition, explained action, the realm of words, as a social phenomenon, one based on dialogic exchanges of ideas and opinions, not a solitary matter of looking things up. And thinking, which she elevates above the scientific enterprise in The Life of the Mind, is mostly a matter of an inner dialogue, or monologue if you prefer, of hearing oneself think, of silent speech, and not of a mental form of writing out words or imaginary reading. We talk things out, to others and/or to ourselves.

Science, on the other hand, is all about visible representations, as words, numbers, illustrations, tables, graphs, charts, diagrams, etc. And it is the investigation of visible phenomena, or otherwise of phenomena that can be rendered visible through scientific instruments. Acoustic phenomena can only be dealt with scientifically by being turned into a visual measurement, either of numbers or of lines going up and down to depict sound waves.  The same is true for the other senses; smell, taste, and touch can only be dealt with scientifically though visual representation. Science cannot deal with any sense other than sight on its own terms, but always requires an act of translation into visual form. Thus, Arendt notes that modern science, being so intimately bound up in the world of appearances, is often concerned with making the invisible visible:

That modern science, always hunting for manifestations of the invisible—atoms, molecules, particles, cells, genes—should have added to the world a spectacular, unprecedented quantity of new perceptible things is only seemingly paradoxical.

Arendt might well have noted the continuity between the modern activity of making the invisible visible as an act of translation, and the medieval alchemist's search for methods of achieving material transformation, the translation of one substance into another. She does note that the use of scientific instruments are a means of extending natural functions, paralleling McLuhan's characterization of media as extensions of body and biology:

In order to prove or disprove its hypotheses… and to discover what makes things work, it [modern science] began to imitate the working processes of nature. For that purpose it produced the countless and enormously complex implements with which to force the non-appearing to appear (if only as an instrument-reading in the laboratory), as that was the sole means the scientist had to persuade himself of its reality. Modern technology was born in the laboratory, but this was not because scientists wanted to produce appliances or change the world. No matter how far their theories leave common-sense experience and common-sense reasoning behind, they must finally come back to some form of it or lose all sense of realness in the object of their investigation.

Note here the close connection between reality, that is, our conception of reality, and what lends someone the aura of authenticity, as Walter Benjamin would put it, is dependent on the visual sense, on the phenomenon being translated into the world of appearances (the aura as opposed to the aural). It is no accident then that there is a close connection in biblical literature and the Hebrew language between the words for spirit and soul, and the words for invisible but audible phenomena such as wind and breath, breath in turn being the basis of speech (and this is not unique to Hebraic culture or vocabulary). It is at this point that Arendt resumes her commentary on the function of the controlled environment:

And this return is possible only via the man-made, artificial world of the laboratory, where that which does not appear of its own accord is forced to appear and to disclose itself. Technology, the "plumber's" work held in some contempt by the scientist, who sees practical applicability as a mere by-product of his own efforts, introduces scientific findings, made in "unparalleled insulation… from the demands of the laity and of everyday life," into the everyday world of appearances and renders them accessible to common-sense experience; but this is possible only because the scientists themselves are ultimately dependent on that experience.

We now reach the point in the text where the quote I began this essay with appears, as Arendt writes:

Seen from the perspective of the "real" world, the laboratory is the anticipation of a changed environment; and the cognitive processes using the human abilities of thinking and fabricating as means to their end are indeed the most refined modes of common-sense reasoning. The activity of knowing is no less related to our sense of reality and no less a world-building activity than the building of houses.

Again, for Arendt, science and common sense both are distinct in this way from the activity of pure thinking, which can provide a sorely needed critical function. But her insight as to the function of the laboratory as an environment in which the invisible is made visible is important in that this helps us to understand that the laboratory is, in fact, what McLuhan referred to as a counter-environment or anti-environment.

In our everyday environment, the environment itself tends to be invisible, if not literally so, then functionally insofar as whatever fades into the background tends to fall out of our perceptual awareness or is otherwise ignored. Anything that becomes part of our routine falls into this category, becoming environmental, and therefore subliminal. And this includes our media, technology, and symbol systems, insofar as they are part of our everyday world. We do pay attention to them when they are brand new and unfamiliar, but once their novelty wears off they become part of the background, unless they malfunction or breakdown. In the absence of such conditions, we need an anti-environment to provide a contrast through which we can recognize the things we take for granted in our world, to provide a place to stand from which we can observe our situation from the outside in, from a relatively objective stance. We are, in effect, sleepwalkers in our everyday environment, and entering into an anti-environment is a way to wake us up, to enhance awareness and consciousness of our surroundings. This occurs, in a haphazard way, when we return home after spending time experiencing another culture, as for a brief time much of what was once routinized about own culture suddenly seems strange and arbitrary to us. The effect wears off relatively quickly, however, although the after-effects of broadening our minds in this way can be significant.

science

The controlled environment of the laboratory helps to focus our attention on phenomena that are otherwise invisible to us, either because they are taken for granted, or because they require specialized instrumentation to be rendered visible. It is not just that such phenomena are brought into the world of appearances, however, but also that they are made into objects of concerted study, to be recorded, described, measured, experimented upon, etc.

McLuhan emphasized the role of art as an anti-environment. The art museum, for example, is a controlled environment, and the painting that we encounter there has the potential to make us see things we had never seen before, by which I mean not just objects depicted that are unfamiliar to us, but familiar objects depicted in unfamiliar ways. In this way, works of art are instruments that can help us to see the world in new and different ways, help us to see, to use our senses and perceive in new and different ways. McLuhan believed that artists served as a kind of distant early warning system, borrowing cold war terminology to refer to their ability to anticipate changes occurring in the present that most others are not aware of. He was fond of the Ezra Pound quote that the artist is the antenna of the race, and Kurt Vonnegut expressed a similar sentiment in describing the writer as a canary in a coal mine. We may further consider the art museum or gallery or library as a controlled environment, a laboratory of sorts, and note the parallel in the idea of art as the anticipation of a changed environment.

There are other anti-environments as well. Houses of worship function in this way, often because they are based on earlier eras and different cultures, and otherwise are constructed to remove us out of our everyday environment, and help us to see the world in a different light. They are in some way dedicated to making the invisible world of the spirit visible to us through the use of sacred symbols and objects, even for religions whose concept of God is one that is entirely outside of the world of appearances. Sanctuaries might therefore be considered laboratories used for moral, ethical, and sacred discovery, experimentation, and development, and places where changed environments are also anticipated, in the form of spiritual enlightenment and the pursuit of social justice. This also suggests that the scientific laboratory might be viewed, in a certain sense, as a sacred space, along the lines that Mircea Eliade discusses in The Sacred and the Profane.

The school and the classroom are also anti-environments, or at least ought to be, as Neil Postman argued in Teaching as a Conserving Activity.  Students are sequestered away from the everyday environment, into a controlled situation where the world they live in can be studied and understood, and phenomena that are taken for granted can be brought into conscious awareness. It is indeed a place where the invisible can be made visible. In this sense, the school and the classroom are laboratories for learning, although the metaphor can be problematic when it used to imply that the school is only about the world of appearances, and all that is needed is to let students discover that world for themselves. Exploration is indeed essential, and discovery is an important component of learning. But the school is also a place where we may engage in the critical activity of pure thinking, of critical reasoning, of dialogue and disputation.

The classroom is more than a laboratory, or at least it must become more than a laboratory, or the educational enterprise will be incomplete. The school ought to be an anti-environment, not only in regard to the everyday world of appearances and common sense, but also to that special world dominated by STEM, by science, technology, engineering and math.  We need the classroom to be an anti-environment for a world subject to a flood of entertainment and information, we need it to be a language-based anti-environment for a world increasingly overwhelmed by images and numbers. We need an anti-environment where words can take precedence, where reading and writing can be balanced by speech and conversation, where reason, thinking, and thinking about thinking can allow for critical evaluation of common sense and common science alike. Only then can schools be engaged in something more than just adjusting students to take their place in a changed and changing environment, integrating them within the technological system, as components of that system, as Jacques Ellul observed in The Technological Society. Only then can schools help students to change the environment itself, not just through scientific and technological innovation, but through the exercise of values other than the technological imperative of efficiency, to make things better, more human, more life-affirming.

The anti-environment that we so desperately need is what Hannah Arendt might well have called a laboratory of the mind.

-Lance Strate

The Hannah Arendt Center
The Hannah Arendt Center at Bard is a unique institution, offering a marriage of non-partisan politics and the humanities. It serves as an intellectual incubator for engaged thinking and public discussion of the nation's most pressing political and ethical challenges.
23Jul/130

Hannah Arendt as a Jewish Cosmopolitan Thinker

ArendtBookreview1

Hannah Arendt’s life and work defy easy categorization, so I tend to be skeptical when a writer tries to encapsulate her oeuvre in a few catchwords. After all, previous efforts at concise assessment have typically led to reductive if not tendentious misreadings. So I was both pleased and surprised by sociologist Natan Sznaider’s book Jewish Memory and the Cosmopolitan Order (2011), which sharpens our understanding of Arendt’s thought by locating her within a specific historical milieu and intellectual genealogy. Briefly put, Sznaider portrays Arendt as both a Jewish and a cosmopolitan thinker, one whose arguments strike a fine balance between the particular and the universal.

jewishmemory

This formulation obviously raises questions about Sznaider’s conception of key terms, including “Jewish” and “cosmopolitan.” With regard to the former, he contends that Arendt should be grasped as a Jewish thinker because she was intimately involved in the political debate and activity that defined Jewish life in the years before and after the Holocaust. As Sznaider notes, Arendt defined her Jewishness first and foremost as “a political stance”. She participated in Zionist mobilization when she still lived in Germany and in the founding of the World Jewish Congress during her time in Paris. She retrieved Jewish books, manuscripts, and other artifacts from Europe in her work for Jewish Cultural Reconstruction. She spoke and wrote as a Jew when she discussed the nature of guilt, responsibility, and memory after the destruction of European Jewry. And, of course, she stirred controversy in American, German, and Israeli circles for her portrayal of Eichmann and her sharp criticisms of Europe’s Jewish leadership. Sznaider convincingly argues that Arendt’s politics, molded in the heat of twentieth-century Jewish activism, left a deep imprint on her political theory. Without grasping her specific engagements as a Jew, he insists, we cannot comprehend her more general pronouncements on rights, totalitarianism, and a host of other topics.

This point has important implications for Sznaider’s conception of cosmopolitanism. In his view, cosmopolitanism

combines appreciation of difference and diversity with efforts to conceive of new democratic forms of political rule beyond the nation-state…. It neither orders differences hierarchically nor dissolves them, but accepts them as such—indeed, invests them with positive value. It is sensitive to historic cultural particularities, respecting the specific dignity and burden of a group, a people, a culture, a religion. Cosmopolitanism affirms what is excluded both by hierarchical difference and by universal equality—namely, perceiving others as different and at the same time equal.

Sznaider’s rendering fits comfortably within recent discussions of “rooted” and “vernacular” cosmopolitanism. He insists that people only create and live forms of worldliness on the basis of their particular experiences, histories, and identities. He thereby distinguishes cosmopolitanism from “universalist” modes of thought, which in his understanding treat people as abstract individuals and do not recognize their specific attachments. Sznaider identifies universalist impulses in a number of intellectual and ideological movements, but he draws particular attention to the Enlightenment and the nationalist ideologies that emerged in Europe after the French Revolution. Both offer Jews inclusion and equality—but only, it seems, if they stop being Jewish.

In Sznaider’s reading, Arendt’s thought is cosmopolitan in precisely this “rooted” sense. Like a number of other twentieth-century Jewish intellectuals, she relied on Jewish particularity to advance broader, even “universal” claims about the nature of modern life and politics. (I use Sznaider’s language here, although I believe he could have more carefully distinguished the “universal” dimensions of Arendt’s thought from the “universalist” projects that he decries.) European Jewish experiences of persecution, for example, offered Arendt a crucial lens through which to analyze the potentials and paradoxes of minority and human rights. She also relied on the destruction of European Jewry to reflect on the emerging concept of “crimes against humanity”—without, at the same time, losing sight of the Holocaust’s irreducible specificity. Arendt’s attentiveness to both the particular and the universal is evident in her description of Nazi mass murder as “a crime against humanity committed on the bodies of the Jewish people.”

Sznaider provides a particularly good account of the ways that Arendt resisted early attempts to “generalize” the Holocaust. In her exchanges with Hans Magnus Enzensberger, for instance, she resisted the suggestion that the mass killing of Jews was but one “holocaust” among others. She also challenged the notion that the destruction of European Jewry was a paradigmatic modern event that all human beings, in one way or another, shared in common. For Arendt, such claims not only neglected the history of a specifically Jewish catastrophe, but also absolved its German perpetrators of their particular responsibility.

hannahorange

Sznaider’s favorable assessment of Arendt in this case represents an interesting development in his own thought: in a 2005 book that he wrote with Daniel Levy, Sznaider had been a good deal more sympathetic to the formation of a globalized Holocaust memory. At that time, he and his co-author regarded worldwide remembrance of the Nazi genocide as an important means to transcend national frames of reference and promote a cosmopolitan human rights regime. Little of that position remains in Jewish Memory and the Cosmopolitan Order. Instead, Sznaider takes critical aim at one fashionable contemporary thinker, Giorgio Agamben, for lifting the Nazi concentration camps out of their historical context and recasting them as the epitome of modern sovereign power.

I sympathize with this reading of Agamben, whose provocative claims tend to outstrip the empirical cases on which they are based. Yet in one respect Sznaider could also be more careful about the generalization if not “universalization” of Jewish experience. He is too quick at a few points to position Jews as the embodiments and carriers of modernity’s virtues, too hasty in his portrayal of the Diaspora as the paradigm for de-territorialization and cosmopolitanism as such. In a 1993 article, Daniel and Jonathan Boyarin—the one a Talmudic studies scholar, the other an anthropologist—cautioned us against “allegorizing” Jews as the exemplary Other, and we would do well to take their warning to heart. Other groups, identities, and histories inhabit the world in which we all live, and we should take seriously the insights that their own particularity might offer to our understanding of cosmopolitanism.

This last criticism notwithstanding, Sznaider’s book provides an incisive re-appraisal of Arendt’s thought. Although its central argument can be stated briefly, it does not narrow our appreciation of her work as much as enliven and expand it.

-Jeff Jurgens

The Hannah Arendt Center
The Hannah Arendt Center at Bard is a unique institution, offering a marriage of non-partisan politics and the humanities. It serves as an intellectual incubator for engaged thinking and public discussion of the nation's most pressing political and ethical challenges.
7Dec/120

What is a Fact?

What is a fact? Few more thorny questions exist. Consider this, from Hannah Arendt’s essay, “Truth and Politics:”

But do facts, independent of opinion and interpretation, exist at all? Have not generations of historians and philosophers of history demonstrated the impossibility of ascertaining facts without interpretation, since they must first be picked out of a chaos of sheer happenings (and the principles of choice are surely not factual data) and then be fitted into a story that can be told only in certain perspective, which has nothing to do with the original occurrence?

Facts are constructed. They are not objective. And there is no clear test for what is a fact. Thus, when Albert Einstein was asked, how science can separate fact from fiction, brilliant hypotheses from nutty quackery, he answered:  ‘There is no objective test.” Unlike rational truths that are true outside of experience and absolute, all factual truths are contingent. They might have been otherwise. That is one reason it is so hard to pin them down.

Steve Shapin reminds us of these puzzles in an excellent essay in this weeks London Review of Books. Shapin is reviewing a new book on Immanuel Velikovsky by Michael Gordin. Velikovsky, for those born since the 1960s, caused an uproar in the 1960s and 70s with his scientific claims that Venus was the result of a dislodged piece of Jupiter, that comets led to the parting of the Red Sea, that it dislodged the orbit of Mars threatening Earth, and caused the relocation of the North Pole, not to mention the showering of plagues of vermin onto the earth that nourished the Israelites in the desert.

Gordin’s book is about how American scientists went ballistic over Velikovsky. They sought to censor his work and schemed to prevent the publication of his book, Worlds in Collision, at the prestigious Macmillan press. At the center of the controversy was Harvard, where establishment scientists worked assiduously to discredit Velikovsky and stop the circulation of his ideas. [I am sensitive to such issues because I was also the target of such a suppression campaign. When my book The Gift of Science was about to be published by Harvard University Press, I received a call from the editor. It turns out an established scholar had demanded that HUP not publish my book, threatening to no longer review books for the press let alone publish with them. Thankfully, HUP resisted that pressure, for which I will always be grateful.]

For these Harvard scientists, Velikovsky was a charlatan peddling a dangerous pseudo science. The danger in Velikovsky’s claims was more than simple misinformation. It led, above all, to an attack on the very essence of scientific authority. What Velikovsky claimed as science flew in the face of what the scientific community knew to be true. He set himself up as an outsider, a dissident. Which he was. In the wake of totalitarianism, he argued that democratic society must allow for alternative and heretical views. The establishment, Velikovsky insisted, had no monopoly on truth. Let all views out, and let the best one win.

Shapin beautifully sums up the real seduction and danger lurking in Velikovsky’s work.

The Velikovsky affair made clear that there were radically differing conceptions of the political and intellectual constitution of a legitimate scientific community, of what it was to make and evaluate scientific knowledge. One appealing notion was that science is and ought to be a democracy, willing to consider all factual and theoretical claims, regardless of who makes them and of how they stand with respect to canons of existing belief. Challenges to orthodoxy ought to be welcomed: after all, hadn’t science been born historically through such challenges and hadn’t it progressed by means of the continual creative destruction of dogma? This, of course, was Velikovsky’s view, and it was not an easy matter for scientists in the liberal West to deny the legitimacy of that picture of scientific life. (Wasn’t this the lesson that ought to be learned from the experience of science in Nazi Germany and Stalinist Russia?) Yet living according to such ideals was impossible – nothing could be accomplished if every apparently crazy idea were to be given careful consideration – and in 1962 Thomas Kuhn’s immensely influential Structure of Scientific Revolutions commended a general picture of science in which ‘dogma’ (daringly given that name) had an essential role in science and in which ‘normal science’ rightly proceeded not through its permeability to all sorts of ideas but through a socially enforced ‘narrowing of perception’. Scientists judged new ideas to be beyond the pale not because they didn’t conform to abstract ideas about scientific values or formal notions of scientific method, but because such claims, given what scientists securely knew about the world, were implausible. Planets just didn’t behave the way Velikovsky said they did; his celestial mechanics required electromagnetic forces which just didn’t exist; the tails of comets were just not the sorts of body that could dump oil and manna on Middle Eastern deserts. A Harvard astronomer blandly noted that ‘if Dr Velikovsky is right, the rest of us are crazy.'

Immanuel Velikovsky

It is hard not to read this account and not think about contemporary debates over global warming, Darwinism, and the fall of the World Trade Center. In all three cases, outsiders and even some dissident scientists have made arguments that have been loudly disavowed by mainstream scientists.

No one has done more to explore the claims of modern pseudo science than Naomi Oreskes. In her book Merchants of Doubt written with Erik Conway, Oreskes shows how “a small handful of men” could, for purely ideological reasons, sow doubt about the ‘facts’ regarding global warming and the health effects of cigarettes. In a similar vein, Jonathan Kay has chronicled the efforts of pseudo scientists to argue that there was no possible way that the World Trade Towers could have been brought down by jet fuel fires, thus suggesting and seeking to “prove” that the U.S. government was behind the destruction of 9/11.

Oreskes wants to show, at once, that it is too easy for politically motivated scientists to sow doubt about scientific fact, and also that there is a workable and effective way for the scientific community to patrol the border between science and pseudo science. What governs that boundary is, in Oreskes words, “the scientific consensus.” The argument that global warming is a fact rests on claims about the scientific method: value free studies, evaluated by a system of peer review, moving towards consensus. Peer review is, for Oreskes, “is a crucial part of science.” And yet, for those who engage in it know full well, peer review is also deeply political, subject to petty and also not so petty disputes, jealousies, and vendettas. For this and other reasons, consensus is, as Oreskes herself admits, not always accurate: “The scientific consensus might, of course, be wrong. If the history of science teaches anything, it is humility, and no one can be faulted for failing to act on what is not known.”

Just as Einstein said 50 years ago, in the matters of establishing scientific fact, there is no objective test. This is frustrating. Indeed, it can be dangerous, not only when pseudo scientists sow doubt about global warming thus preventing meaningful and necessary action. But also, the pervasive and persuasive claims of pseudo science sow cynicism that undermines the factual and truthful foundations of human life.

Arendt reminds us, with a clarity rarely equaled, that factual truth is always contingent. “Facts are beyond agreement and consent, and all talk about them—all exchanges of opinion based on correct information—will contribute nothing to their establishment.” Against the pseudo scientific claims of many, science is always a contingent and hypothetical endeavor, one that deals in hypotheses, agreement, and factual proof. Scientific truth is always empirical truth and the truths of science are, in the end, grounded in consensus.

The trouble here is that scientific truths must—as scientific—claim to be true and not simply an opinion. Science makes a claim to authority that is predicated not upon proof but on the value and meaningfulness of impartial inquiry. It is a value that is increasingly in question.

What the challenge of pseudo science shows is how tenuous scientific authority and the value placed on disinterested research really is. Such inquiry has not always been valued and there is no reason to expect it to be valued about partial inquiry in the future. Arendt suggests that the origin of the value in disinterested inquiry was Homer’s decision to praise the Trojans equally as he lauded the Achaeans. Never before, she writes, had one people been able to look “with equal eyes upon friend and foe.” It was this revolutionary Greek objectivity that became the source for modern science. For those who do value science and understand the incredible advantages it has bestowed upon modern civilization, it is important to recall that the Homeric disinterestedness is neither natural nor necessary. In the effort to fight pseudo science, we must be willing and able to defend just such a position and thus what Nietzsche calls the “pathos of distance” must be central to any defense of the modern scientific world.

When science loses its authority, pseudo science thrives. That is the situation we are increasingly in today. There are no objective tests and no clear lines demarcating good and bad science. And that leaves us with the challenge of the modern age: to pursue truth and establish facts without secure or stable foundations. For that, we need reliable guides whom we can trust. And for that reason, you should read Steven Shapin’s latest essay. It is your weekend read.

-RB

Roger Berkowitz
Roger Berkowitz is Associate Professor of Political Studies and Human Rights at Bard College, and Academic Director of the Hannah Arendt Center for Politics and the Humanities. He is also the author of "Gift of Science: Leibiniz and the Modern Legal Tradition", as well as co-editor of "Thinking in Dark Times: Hannah Arendt on Ethics and Politics".